3.89 \(\int (a+a \cos (c+d x))^{3/2} (A+C \cos ^2(c+d x)) \sec ^4(c+d x) \, dx\)

Optimal. Leaf size=155 \[ \frac {a^{3/2} (11 A+24 C) \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{8 d}+\frac {a^2 (19 A+24 C) \tan (c+d x)}{24 d \sqrt {a \cos (c+d x)+a}}+\frac {A \tan (c+d x) \sec ^2(c+d x) (a \cos (c+d x)+a)^{3/2}}{3 d}+\frac {a A \tan (c+d x) \sec (c+d x) \sqrt {a \cos (c+d x)+a}}{4 d} \]

[Out]

1/8*a^(3/2)*(11*A+24*C)*arctanh(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))/d+1/3*A*(a+a*cos(d*x+c))^(3/2)*sec(
d*x+c)^2*tan(d*x+c)/d+1/24*a^2*(19*A+24*C)*tan(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+1/4*a*A*sec(d*x+c)*(a+a*cos(d*x
+c))^(1/2)*tan(d*x+c)/d

________________________________________________________________________________________

Rubi [A]  time = 0.52, antiderivative size = 155, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3044, 2975, 2980, 2773, 206} \[ \frac {a^2 (19 A+24 C) \tan (c+d x)}{24 d \sqrt {a \cos (c+d x)+a}}+\frac {a^{3/2} (11 A+24 C) \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{8 d}+\frac {A \tan (c+d x) \sec ^2(c+d x) (a \cos (c+d x)+a)^{3/2}}{3 d}+\frac {a A \tan (c+d x) \sec (c+d x) \sqrt {a \cos (c+d x)+a}}{4 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])^(3/2)*(A + C*Cos[c + d*x]^2)*Sec[c + d*x]^4,x]

[Out]

(a^(3/2)*(11*A + 24*C)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(8*d) + (a^2*(19*A + 24*C)*Ta
n[c + d*x])/(24*d*Sqrt[a + a*Cos[c + d*x]]) + (a*A*Sqrt[a + a*Cos[c + d*x]]*Sec[c + d*x]*Tan[c + d*x])/(4*d) +
 (A*(a + a*Cos[c + d*x])^(3/2)*Sec[c + d*x]^2*Tan[c + d*x])/(3*d)

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2773

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(-2*
b)/f, Subst[Int[1/(b*c + a*d - d*x^2), x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2975

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b^2*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*(c + d*S
in[e + f*x])^(n + 1))/(d*f*(n + 1)*(b*c + a*d)), x] - Dist[b/(d*(n + 1)*(b*c + a*d)), Int[(a + b*Sin[e + f*x])
^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n +
 1) - B*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d
, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n]
 || EqQ[c, 0])

Rule 2980

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b^2*(B*c - A*d)*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(n
+ 1)*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]]), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(2*d*(n + 1)
*(b*c + a*d)), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, A
, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1]

Rule 3044

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((c^2*C + A*d^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[
e + f*x])^(n + 1))/(d*f*(n + 1)*(c^2 - d^2)), x] + Dist[1/(b*d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^
m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a*d*m + b*c*(n + 1)) + c*C*(a*c*m + b*d*(n + 1)) - b*(A*d^2*(m + n +
2) + C*(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, m}, x] && NeQ[b
*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2, 0
])

Rubi steps

\begin {align*} \int (a+a \cos (c+d x))^{3/2} \left (A+C \cos ^2(c+d x)\right ) \sec ^4(c+d x) \, dx &=\frac {A (a+a \cos (c+d x))^{3/2} \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac {\int (a+a \cos (c+d x))^{3/2} \left (\frac {3 a A}{2}+\frac {1}{2} a (A+6 C) \cos (c+d x)\right ) \sec ^3(c+d x) \, dx}{3 a}\\ &=\frac {a A \sqrt {a+a \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{4 d}+\frac {A (a+a \cos (c+d x))^{3/2} \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac {\int \sqrt {a+a \cos (c+d x)} \left (\frac {1}{4} a^2 (19 A+24 C)+\frac {1}{4} a^2 (7 A+24 C) \cos (c+d x)\right ) \sec ^2(c+d x) \, dx}{6 a}\\ &=\frac {a^2 (19 A+24 C) \tan (c+d x)}{24 d \sqrt {a+a \cos (c+d x)}}+\frac {a A \sqrt {a+a \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{4 d}+\frac {A (a+a \cos (c+d x))^{3/2} \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac {1}{16} (a (11 A+24 C)) \int \sqrt {a+a \cos (c+d x)} \sec (c+d x) \, dx\\ &=\frac {a^2 (19 A+24 C) \tan (c+d x)}{24 d \sqrt {a+a \cos (c+d x)}}+\frac {a A \sqrt {a+a \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{4 d}+\frac {A (a+a \cos (c+d x))^{3/2} \sec ^2(c+d x) \tan (c+d x)}{3 d}-\frac {\left (a^2 (11 A+24 C)\right ) \operatorname {Subst}\left (\int \frac {1}{a-x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{8 d}\\ &=\frac {a^{3/2} (11 A+24 C) \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{8 d}+\frac {a^2 (19 A+24 C) \tan (c+d x)}{24 d \sqrt {a+a \cos (c+d x)}}+\frac {a A \sqrt {a+a \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{4 d}+\frac {A (a+a \cos (c+d x))^{3/2} \sec ^2(c+d x) \tan (c+d x)}{3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.89, size = 124, normalized size = 0.80 \[ \frac {a \sec \left (\frac {1}{2} (c+d x)\right ) \sec ^3(c+d x) \sqrt {a (\cos (c+d x)+1)} \left (\sin \left (\frac {1}{2} (c+d x)\right ) (3 (11 A+8 C) \cos (2 (c+d x))+44 A \cos (c+d x)+49 A+24 C)+3 \sqrt {2} (11 A+24 C) \cos ^3(c+d x) \tanh ^{-1}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right )\right )}{48 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cos[c + d*x])^(3/2)*(A + C*Cos[c + d*x]^2)*Sec[c + d*x]^4,x]

[Out]

(a*Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*Sec[c + d*x]^3*(3*Sqrt[2]*(11*A + 24*C)*ArcTanh[Sqrt[2]*Sin[(c
+ d*x)/2]]*Cos[c + d*x]^3 + (49*A + 24*C + 44*A*Cos[c + d*x] + 3*(11*A + 8*C)*Cos[2*(c + d*x)])*Sin[(c + d*x)/
2]))/(48*d)

________________________________________________________________________________________

fricas [A]  time = 0.63, size = 196, normalized size = 1.26 \[ \frac {3 \, {\left ({\left (11 \, A + 24 \, C\right )} a \cos \left (d x + c\right )^{4} + {\left (11 \, A + 24 \, C\right )} a \cos \left (d x + c\right )^{3}\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + 4 \, {\left (3 \, {\left (11 \, A + 8 \, C\right )} a \cos \left (d x + c\right )^{2} + 22 \, A a \cos \left (d x + c\right ) + 8 \, A a\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{96 \, {\left (d \cos \left (d x + c\right )^{4} + d \cos \left (d x + c\right )^{3}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(3/2)*(A+C*cos(d*x+c)^2)*sec(d*x+c)^4,x, algorithm="fricas")

[Out]

1/96*(3*((11*A + 24*C)*a*cos(d*x + c)^4 + (11*A + 24*C)*a*cos(d*x + c)^3)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*
cos(d*x + c)^2 - 4*sqrt(a*cos(d*x + c) + a)*sqrt(a)*(cos(d*x + c) - 2)*sin(d*x + c) + 8*a)/(cos(d*x + c)^3 + c
os(d*x + c)^2)) + 4*(3*(11*A + 8*C)*a*cos(d*x + c)^2 + 22*A*a*cos(d*x + c) + 8*A*a)*sqrt(a*cos(d*x + c) + a)*s
in(d*x + c))/(d*cos(d*x + c)^4 + d*cos(d*x + c)^3)

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(3/2)*(A+C*cos(d*x+c)^2)*sec(d*x+c)^4,x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [B]  time = 2.38, size = 1311, normalized size = 8.46 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*cos(d*x+c))^(3/2)*(A+C*cos(d*x+c)^2)*sec(d*x+c)^4,x)

[Out]

1/6*a^(1/2)*cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-24*a*(11*A*ln(-4/(-2*cos(1/2*d*x+1/2*c)+2^(1/2
))*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))+11*A*ln(4/(2*cos(1/2*d*x
+1/2*c)+2^(1/2))*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))+24*C*ln(-4
/(-2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-a*2^(1/2)*cos(1/2*d*x+1/2*c)+
2*a))+24*C*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+a*2^(1/2)*cos(1
/2*d*x+1/2*c)+2*a)))*sin(1/2*d*x+1/2*c)^6+12*(22*A*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+16*C*2^(1/2)
*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+33*A*ln(-4/(-2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*(a*sin(1/2*d*x+1/2
*c)^2)^(1/2)*a^(1/2)-a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a+33*A*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*(a
*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a+72*C*ln(-4/(-2*cos(1/2*d*x+1/2*c)+2^
(1/2))*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a+72*C*ln(4/(2*cos(1
/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a)*s
in(1/2*d*x+1/2*c)^4-2*(176*A*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+96*C*2^(1/2)*(a*sin(1/2*d*x+1/2*c)
^2)^(1/2)*a^(1/2)+99*A*ln(-4/(-2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-a
*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a+99*A*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)
^(1/2)*a^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a+216*C*ln(-4/(-2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*(a*si
n(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a+216*C*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2
))*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a)*sin(1/2*d*x+1/2*c)^2+
33*A*ln(-4/(-2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-a*2^(1/2)*cos(1/2*d
*x+1/2*c)+2*a))*a+33*A*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+a*2
^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a+126*A*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+72*C*ln(-4/(-2*cos(1/2*
d*x+1/2*c)+2^(1/2))*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a+72*C*
ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/2*
c)+2*a))*a+48*C*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2))/(2*cos(1/2*d*x+1/2*c)-2^(1/2))^3/(2*cos(1/2*d*
x+1/2*c)+2^(1/2))^3/sin(1/2*d*x+1/2*c)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d

________________________________________________________________________________________

maxima [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(3/2)*(A+C*cos(d*x+c)^2)*sec(d*x+c)^4,x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\left (C\,{\cos \left (c+d\,x\right )}^2+A\right )\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{3/2}}{{\cos \left (c+d\,x\right )}^4} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + C*cos(c + d*x)^2)*(a + a*cos(c + d*x))^(3/2))/cos(c + d*x)^4,x)

[Out]

int(((A + C*cos(c + d*x)^2)*(a + a*cos(c + d*x))^(3/2))/cos(c + d*x)^4, x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**(3/2)*(A+C*cos(d*x+c)**2)*sec(d*x+c)**4,x)

[Out]

Timed out

________________________________________________________________________________________